
Table of Contents
Program Development Tools...1

Recommended Intel Compiler Debugging Options...1
Totalview..4
Totalview Debugging on Pleiades...5
Totalview Debugging on Columbia..8
IDB...10
GDB...11
Using pdsh_gdb for Debugging Pleiades PBS Jobs..12

Program Development Tools

Recommended Intel Compiler Debugging Options

DRAFT

This article is being reviewed for completeness and technical accuracy.

Commonly used options for debugging:

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide
source file traceback information when a severe error occurs at run-time.

Specifying -traceback will increase the size of the
executable program, but has no impact on run-time
execution speeds.

-check all
Checks for all run-time failures. Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform run-time checks on array
subscript and character substring expressions. Fortran only.

Once the program is debugged, omit this option to reduce
executable program size and slightly improve run-time
performance.

-check uninit
Checks for uninitialized scalar varaibles without the SAVE attribute. Fortran
only.

-check-uninit
Enables run-time checking for uninitialized variables. If a variable is read
before it is written, a run-time error routine will be called. Run-time checking of

•

Program Development Tools 1

undefined variables is only implemented on local, scalar variables. It is not
implemented on dynamically allocated variables, extern variables or static
variables. It is not implemented on structs, classes, unions or arrays. C/C++
only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are
allocated on the stack to a value that is typically interpreted as a very large
integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors. This option sets
-g.

-debug all
Enables debug information and control output of enhanced debug information.
To use this option, you must also specify the -g option.

-gen-interfaces -warn interfaces
Tells the compiler to generate an interface block for each routine in a source
file; the interface block is then checked with -warn interfaces

Options for handling floating-point exceptions:

-fpe{0|1|3}
Allows some control over floating-point exception (divide by zero, overflow,
invalid operation, underflow, denormalized number, positive infinity, negative
infinity or a NaN) handling for the main program at run-time. Fortran only.

-fpe0: underflow gives 0.0; abort on other IEEE exceptions⋅
-fpe3: produce NaN, signed infinities, and denormal results⋅

Default is -fpe3 with which all floating-point exceptions are disabled and
floating-point underflow is gradual, unless you explicitly specify a compiler
option that enables flush-to-zero. Use of -fpe3 on IA-64 systems such as
Columbia will slow run-time performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in
a program at run-time. Also sets -assume ieee_fpe_flags. Default is
-fpe-all=3. Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine
entry and restore them on routine exit. This option can slow runtime
performance. Fortran only.

-ftz

•

Recommended Intel Compiler Debugging Options 2

Flushes denormal results to zero when the application is in the gradual
underflow mode. This option has effect only when compiling the main
program. It may improve performance if the denormal values are not critical
to your application's behavior. For IA-64 systems (such as Columbia), -O3
sets -ftz. For Intel 64 systems (such as Pleiades), every optimization option O
level, except -O0, sets -ftz.

Options for handling floating-point precision:

-mp
Enables improved floating-point consistency during calculations. This option
limits floating-point optimizations and maintains declared precision. -mp1
restricts floating-point precision to be closer to declared precision. It has some
impact on speed, but less than the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations. It disables optimizations that can
change the result of floating-point calculations. These semantics ensure the
accuracy of floating-point computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when
implementing floating-point calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is
-fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the
accuracy of the significand, or fractional part of the floating-point value. For
example, iterative operations like division and finding the square root can run
faster if you lower the precision with the -pc option. -pc64 sets internal FPU
precision to 53-bit significand. -pc80 is the default and it sets internal FPU
precision to 64-bit significand.

•

Recommended Intel Compiler Debugging Options 3

Totalview

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is a GUI-based debugging tool that gives you control over processes and thread
execution and visibility into program state and variables for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks and race conditions, etc.

Totalview allows you to debug serial, OpenMP, or MPI codes.

Totalview is available on both Pleiades and Columbia. See Totalview Debugging on
Pleiades for some basic instructions on how to start using Totalview on Pleiades.

See Totalview Debugging on Columbia for some basic instructions on how to start using
Totalview on Columbia.

Totalview 4

Totalview Debugging on Pleiades

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. Its versions have been
installed as modules. To find out what versions of totalview are available, use the 'module
avail' command.

There are additional steps needed in order to start the TotalView GUI. You'll need to rely on
the ForwardX11 feature of your ssh. First, you'll have to make sure that your sysadmin had
turned on ForwardX11 when SSH was installed on your system or use the -X or -Y (if
available) options of ssh to enable X11 forwarding for your SSH session.

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session. For example:

% qsub -I -V -lselect=2:ncpus=8,walltime=1:00:00

•

Test the X11 forwarding with xlock

% xclock

•

Load the totalview module

% module load apps/etnus/totalview.8.6.2-1

•

Set the environment variable TOTALVIEW

% setenv TOTALVIEW `which totalview` (for csh users)
or
% export TOTALVIEW=`which totalview` (for bash users)

•

Start TotalView debugging

For serial applications:

Simply start totalview with your application as an argument

% totalview ./a.out

◊

♦

•

Totalview Debugging on Pleiades 5

http://www.nas.nasa.gov/kb/Modules_115.html

If your application requires arguments:

% totalview ./a.out -a app_arg_1 app_arg_2

For MPI applications:

Make sure you load the appropriate modules, including the compiler,
and mpi module. For example:

For applications built with SGI's MPT, make sure that you have loaded
the latest MPT module:

% module load comp-intel/11.1.072
% module load mpi-sgi/mpt.1.26

For applications built with MVAPICH:

% module load comp-intel/11.1.072
% module load mpi-mvapich2/1.4.1/intel

1.

Launch totalview by typing "totalview" all by itself. Once the totalview
windows pop up, you will see four tabs in the "New Program" window:
Program, Arguments, Standard I/O and Parallel.

2.

Fill in the executable name in the "Program" box or use the Browse
button to find the executable

3.

Give any arguments to your executable by clicking on the "Arguments"
tab and filling in what you need. If you need to redirect input from a file,
do so by clicking the "Standard I/O" tab and filling in what you need.

4.

In the "Parallel" tab, select the parallel system option MVAPICH2 or
mpt_1.26 depending on which version of MPI you have compiled with.

5.

Enter in the number of processes in the 'tasks' box; leave the 'nodes'
field 0. For example, if you run your application with 2 nodes x 4 MPI
processes/node = 8 processes in total, fill in 8 in the 'tasks' box and 0
in the 'node' box.

6.

Then press "Go" to start. Note that it may initially dump you into the
mpiexec assembler source which is not your own code.

7.

Respond to the popup dialog box which says "Process xxx is a parallel
job. Do you want to stop the job now?" Choose "No" if you just want to
run your application. Choose "Yes" if you want to set breakpoint in your
source code or do other tasks before running.

8.

♦

Totalview Debugging on Pleiades 6

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Pleiades 7

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

Totalview Debugging on Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

TotalView is an advanced debugger for complex and parallel codes. It has been installed as
modules. To find out what versions of totalview are available, use the command 'module
avail totalview'.

You'll need to rely on the ForwardX11 feature of your ssh. First, you'll have to make sure
that your sysadmin had turned on ForwardX11 when SSH was installed on your local
system or use the -X or -Y (if available) options of ssh to enable X11 forwarding for your
SSH session.

For debugging on the front-end cfe2, do:

Login to the front-end cfe2•

Compile your code with -g•

Make sure that X11 forwarding works and test it with xclock

cfe2%echo $DISPLAY
cfe2:xx.0
cfe2%xclock

•

Load the totalview module

cfe2% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

cfe2% totalview a.out

For MPI jobs built with SGI's MPT library:

cfe2% totalview mpirun.real -a -np xxx a.out

•

For debugging on a back-end node, do:

Compile your code with -g•

Start a PBS session and pass in the environment variable DISPLAY. Assuming
PBS assign your job to run on Columbia21

•

Totalview Debugging on Columbia 8

cfe2% qsub -I -v DISPLAY -lncpus=8,walltime=1:00:00

Test the X11 forwarding with xlock

PBS(8cpus)columbia21% xclock

•

Load the totalview module

PBS(8cpus)columbia21% module load totalview.8.9.0-1

•

Start totalview. For serial jobs:

PBS(8cpus)columbia21% totalview a.out

For MPI jobs built with SGI's MPT library:

PBS(8cpus)columbia21% totalview mpirun.real -a -np xxx a.out

•

More information about TotalView can be found at the Totalview online documentation
website.

Totalview Debugging on Columbia 9

http://www.roguewave.com/products/totalview-family/totalview.aspx
http://www.roguewave.com/products/totalview-family/totalview.aspx

IDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The Intel Debugger is a symbolic source code debugger that debugs programs compiled by
the Intel Fortran and C/C++ Compiler, and the GNU compilers (gcc, g++).

IDB is included in the Intel compiler distribution. For IA-64 systems such as Columbia, both
the Intel 10.x and 11.x compiler distributions provide only an IDB command-line interface.
To use IDB on Columbia, load an Intel 10.x or 11.x compiler module. For example:

%module load intel-comp.11.1.072
%idb
(idb)

For Intel 64 systems such as Pleiades, a command-line interface is provided in the 10.x
distribution and is invoked with the command idb just like on Columbia. For the Intel 11.x
compilers, both a graphical user interface (GUI), which requires a Java Runtime, and a
command-line interface are provided. The command idb invokes the GUI interface by
default. To use the command-line interface under 11.x compilers, use the command idbc.
For example:

%module load comp-intel/11.1.072 jvm/jre1.6.0_20
%idb
.... This will bring up an IDB GUI

%module load comp-intel/11.1.072
%idbc
(idb)

Be sure to compile your code with the -g option for symbolic debugging.

Depending on the Intel compiler distributions, the Intel Debugger can operate in either the
gdb mode, dbx mode or idb mode. The available commands under these modes are
different.

For information on IDB in the 10.x distribution, read man idb.

For information on IDB in the 11.x distribution, read documentations under pfe or
cfe2:/nasa/intel/Compiler/11.1/072/Documentation/en_US/idb

IDB 10

http://www.nas.nasa.gov/kb/Modules_115.html

GDB

DRAFT

This article is being reviewed for completeness and technical accuracy.

The GNU Debugger, GDB, is available on both Pleiades and Columbia under /usr/bin. It
can be used to debug programs written in C, C++, Fortran and Modula-a.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

Start your program, specifying anything that might affect its behavior.•
Make your program stop on specified conditions.•
Examine what has happened, when your program has stopped.•
Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself
%gdb
(gdb)

•

Start the debugger and specify the executable
%gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file
%gdb your_executable core-file
(gdb)

•

Attach gdb to a running process
%gdb your_executable pid
(gdb)

•

At the prompt (gdb), type in commands such as break for setting a breakpoint, run for
starting to run your executable, step for stepping into next line, etc. Read man gdb to learn
more on using gdb.

GDB 11

Using pdsh_gdb for Debugging Pleiades PBS Jobs

DRAFT

This article is being reviewed for completeness and technical accuracy.

A script called pdsh_gdb, created by NAS staff Steve Heistand, is available on Pleiades
under /u/scicon/tools/bin for debugging PBS jobs while the job is running.

Launching this script from a Pleiades front-end node allows one to connect to each
compute node of a PBS job and create a stack trace of each process. The aggregated
stack trace from each process will be written to a user specified directory (by default, it is
written to ~/tmp).

Here is an example of how to use this script:

pfe1% mkdir tmp
pfe1% /u/scicon/tools/bin/pdsh_gdb -j jobid -d tmp -s -u nas_username

More usage information can be found by launching pdsh_gdb without any option:

pfe1% /u/scicon/tools/bin/pdsh_gdb

Using pdsh_gdb for Debugging Pleiades PBS Jobs 12

	Table of Contents
	Program Development Tools
	Recommended Intel Compiler Debugging Options
	Totalview
	Totalview Debugging on Pleiades
	Totalview Debugging on Columbia
	IDB
	GDB
	Using pdsh_gdb for Debugging Pleiades PBS Jobs

